Главная страница -> Переработка мусора
Новая страница 1. Вывоз мусора. Переработка мусора. Вывоз отходов. СтроительствоТепловая сеть система трубопроводов и потребительских вводов для транспорта и распределения теплоносителя (горячей воды или пара). Трубы прокладываются под землей в каналах или в грунте, а также над землей на эстакадах или на мачтах. Тепловая характеристика зданий величина, характеризующая свойства здания терять тепло в холодный период года; выражается величиной тепло-потерь 1 м3 объема здания в течение 1 часа при разности темп-р внутр. и наружного воздуха, равной 1°. Тепловое излучение температурное излучение, электромагнитное излучение, обусловленное тепловой энергией излучающего тела (твердого, жидкого, газообразного). Происходит в результате колебаний электрически заряженных частиц (электронов, ионов) в веществе. Т. и. – одна из форм теплопередачи от одного тепа к другому. Характерное отличие Т. и. от др. процессов излучения: распределение энергии между телом и излучением при данной темп-ре ей временем не меняется, т.е. при Т. и. имеет место устойчивое равновесное состояние. В Т. и. присутствуют электромагнитные волны разной длины (сплошной спектр), но доля волн с той или иной длиной волны существ. образом зависит от темп-ры. При низких темп-рах излучаются в основном инфракрасные лучи, при более высоких темп-рах появляется видимое свечение. Тепловой двигатель преобразует тепловую энергию в механическую Классифицируется по различным признакам: поршневые, лопаточные; паровые, газовые; внутр. или внеш. сгорания и др. Тепловой насос теппоэнергетическая установка, в которой с помощью компрессора и низкокипящей жидкости подогревается теплоноситель в системе отопления. В основном состоит из конденсатора высокого давления, испарителя низкого давления, компрессора и дроссельного вентиля. Испарение низкокипящей жидкости при низком давлении ведется за счет тепла водоема невысокой темп-ры; далее пар сжимается в компрессоре и конденсируется в конденсаторе высокого давления, охлаждаемом теплоносителем системы отопления. Проходя через дроссельный вентиль, жидкость снижает свое давление и поступает в испаритель, после чего цикл повторяется. Тепловые циклы круговые процессы, при которых рабочее тело (пар, газ) теплового двигателя, претерпев ряд изменений в полостях этого двигателя, возвращается в первонач. состояние. Изменение состояния (термодинамич. процесс) выражается в изменении характерных параметров рабочего тела: темп-ры Т, давления р, удельного объема и энтропии S. Эти параметры связаны между собой определ. соотношением и графически изображаются линиями в координатах р или TS. Весь Т. ц. изображается замкнутой кривой, площадь которой выражает количество теплоты или работы в некотором масштабе. В основе тепловых двигателей лежит прямой Т. ц. В одном из составляющих его процессов подводится тепло Q1, при высокой темп-ре T1, и затем в другом термодинамич. процессе отводится тепло Q2 при более низкой темп-ре T2. Теплоемкость количество теплоты, поглощаемой телом при нагревании на 1°С. Т. единицы массы вещества наз. удельной, Т. одного моля – молярной. Т. зависит от способа нагревания тела. Различают Т. при постоянном давлении и при постоянном объеме. Т. при постоянном давлении всегда больше, чем Т. при постоянном объеме. Теплоизоляционные материалы материалы и изделия, применяемые для теплоизоляции; отличаются пористым строением, малым объемным весом и низким коэффициентом теплопроводности (меньше 0,25 ккал/м-час-град). Различают Т. м.: органические (древесно-вопокнистые плиты, торфяные изоляционные плиты, камышит, фибролит пенопористые пластические массы и др.) и неорганические (стеклянная и минеральная вата, пенобетон, пеносиликат газобетон, шпаки, вспученный вермикулит, асбестовые материалы и др.) Теплоизоляция тепловая изоляция, термоизоляция, защита зданий, тепловых установок, трубопроводов, камер холодильников и т.п. от теплообмена с окружающей средой. Т. осуществляется устройством ограждений (оболочек, покрытий), затрудняющих переход тепла из одной зоны в другую и выполняемых преим. из теплоизоляционных материалов. Теплоносители органические, соединения или смеси некоторых органич. веществ, применяемых как теплоносители для нагревания или охлаждения при 200...400°. Наиболее распространены дифенил, дифениловый эфир, кремнийорганич. соединения и др. и особенно – даутерм – смесь 26,5% дифенила и 73,5% дифенилового эфира, который применяется как теплоноситель для нагревания не выше 400°. Теплоноситель газ, пар и жидкость, передающие тепло от более нагретого тела к менее нагретому для нагревания, охлаждения, сушки и т.п. В качестве Т. широко применяются топочные (дымовые) газы, водяной пар, вода и др. Теплообмен процесс распространения тепла от более нагретого тела к менее нагретому. См. Теплопередача. Теплообменный аппарат теплообменник, для передачи тепла от греющего вещества теплоносителя к нагреваемому веществу. По принципу действия Т. а. разделяются на поверхностные, в которых теплообмен происходит через поверхность нагрева, и смесительные, в которых рабочие среды непосредственно перемешиваются друг с другом. Теплоотдача 1) переход тепла от жидкости или газа к соприкасающейся стенке или от стенки к соприкасающейся с ней жидкости или газу. 2) Количество тепла, переходящее в процессе Т. в первом значении. Теплопередача совокупность самопроизвольных (необратимых) процессов переноса тепла (теплообмена), происходящих в неравномерно нагретых телах (средах) или между телами, разделенными промежуточной средой, с различными темп-рамп. Т. происходит 3 способами: теплопроводностью конвекцией и тепловым излучением. Теплопроводность один из видов теплопередачи, при котором перенос тепла имеет атомно-молекулярный характер. В отличие от конвекции, перенос тепла при Т. происходит без макроскопич. движений в теле. Теплород теплотвор, по распространенным в физике 18 и 1-й пол. 19 вв. ошибочным воззрениям, особая невесомая материя, входящая в состав каждого тела и являющаяся причиной теплоты тел. Теплоснабжение централизов. снабжение потребителей (пром. предприятий, жилых домов и др.) горячей водой и паром для отопления, технологич. процессов и т.п. Т. осуществляется от теплоэлектроцентралей, районных, групповых и др. котельных. Теплосодержание энтальпия, количество теплоты, сообщаемое телу в процессе нагревания при постоянном давлении от 0°С (или абс. нуля). Т. является параметром тепа (величиной, характеризующей его состояние). Теплота форма движения материи, представляющая собой беспорядочное движение образующих тело частиц (атомов, молекул, электронов и др.). Теплота образования тепловой эффект реакции образования данного соединения из тех или других исходных веществ. Зная Т. о. всех участников реакции, можно рассчитать тепловой эффект самой реакции, что имеет большое значение для технологии и др. расчетов. Теплота парообразования скрытая теплота парообразования, количество тепла, которое необходимо сообщить веществу для перевода его из жидкого состояния в парообразное при темп-ре кипения. Т.п. единицы массы вещества наз. у дельной т.п. Теплотехника отрасль науки и техники, охватывающая методы и принципы получения, преобразования, распределения, транспортирования, использования тепла с помощью тепловых машин, аппаратов и устройств (паровых, водогрейных котлов, теплообменников, паровых машин, паровых и газовых турбин, двигателей внутр. сгорания, реактивных двигателей и т.п.). Теплоустойчивость здания, способность здания сохранять в допустимых пределах постоянство темп-ры воздуха в помещении при периодич. изменениях темп-ры воздуха и колебаниях теплового потока, проходящего через конструкцию зимой – при неравномерной отдаче тепла отоплением, летом – при воздействии солнечной радиации. Т. здания зависит от Т. его ограждающих конструкций, а также от теплоемкости его внутр. конструкций и оборудования. Теплоцентраль центр, тепловая станция (районная котельная), снабжающая теплоносителем (горячей водой, паром) жилые, обществ.-коммунальные здания, пром. предприятия. Основное оборудование – водогрейные и паровые котлы. Теплоэнергетика раздел энергетики, охватывающий преобразование тепла в др. виды энергии (механич., электрическая) с помощью тепловых двигателей, электрич. и др. машин. Основное предприятие – силовая установка (электростанция). Источники информации: Физический энциклопедический словарь. М.: Советская Энциклопедия, 1983. Словарь иностранных слов и выражений.– Мн.: Литература, 1997. Большая энциклопедия Кирилла и Мефодия, 1998.
Теплоэлектроцентрали производят два вида товара – тепловую и электрическую энергию. Оба товара имеют много общего – их нельзя хранить, накапливать, перемещение товара приходится осуществлять по специально сооруженным сетям, в которых происходят неизбежные потери. В тоже время имеется и существенное различие: тепловую энергию экономически нецелесообразно передавать на большие расстояния. Этим определяется реальность и естественная монопольность рынка тепловой энергии. Практически существует очень мало дублирующих систем централизованного теплоснабжения, осуществляющих раздельную передачу теплоты от разных теплоисточников к общим потребителям. В условиях естественной монополии поставщика и при государственном регулировании цен на тепловую энергию у потребителя в рыночных условиях появилось только одно отсутствовавшее ранее право – право отказа от покупки тепловой энергии в централизованной системе с устройством собственных систем теплообеспечения. Значительная часть потребителей, имеющих достаточные средства для осуществления таких проектов, уже отключилась от ТЭЦ, т.е. отключились самые платежеспособные потребители. Затраты на содержание централизованной системы не уменьшились, поэтому удельные затраты значительно возросли – увеличились и тарифы на тепловую энергию, что предопределило последующие отключения и выбор новыми застройщиками локальных систем теплообеспечения. Отключение тепловых потребителей от ТЭЦ так же привело к росту себестоимости электрической энергии, что делает перспективы ТЭЦ на создающемся рынке электрической энергии довольно мрачными. Выход из создавшейся ситуации невозможно найти, не разобравшись во взаимовлиянии изменений на рынках тепловой и электрической энергии. Попробуем это сделать: 1. Тепловая энергия как товар является побочным продуктом при производстве электрической энергии. Большей частью это просто тепловые отходы, которые при невостребованности в теплоснабжении приходится выбрасывать в окружающую среду через градирни. Основная выгода централизованных систем теплоснабжения и определяется тем, что в них, с помощью тепловых сетей, можно использовать тепловые отходы различных производств. В то же время, замещение ТЭЦ по электрической энергии осуществляется довольно легко, а по тепловой – как правило, в короткие сроки нереально. Поэтому ТЭЦ на рынке тепловой энергии должны нести гораздо более серьезные обязательства. Таким образом, технологически для ТЭЦ электрическая энергия является основным товаром, к ней предъявляются гораздо более жесткие требования по качеству, а с точки зрения потребителей гораздо более важной является поставка тепловой энергии. В отличие от электрической энергии тепловая поступает к потребителю от конкретной ТЭЦ, и качество ее работы целиком определяет качество и надежность теплоснабжения. 2. Общеизвестен график Гинтера характеризующий возможности разнесение затрат на топливо между тепловой и электрической энергией при совместной выработке их на ТЭЦ (рис. 1). Аналогичен график соотношения себестоимости на выработку тепловой и электрической энергии (рис. 2). 3. Рассмотренный график соответствует фактически подключенный тепловой нагрузке (график 1 на рис. 3). Подключение новых тепловых потребителей, возврат отключившихся снижают общую себестоимость и увеличивают наклон графика (график 2 на рис. 3). Дальнейшее отключение тепловых потребителей увеличивает общую себестоимость и уменьшает наклон графика (график 3 на рис. 3). 4. Количество подключенных тепловых потребителей в первую очередь определяется тарифом на тепловую энергию. При какой-то минимальной величине тарифа, все потребители имеющие возможность при небольших затратах подключится к ТЭЦ постепенно сделают это (график 2 на рис. 4). При превышении тарифом на тепловую энергию какой то величины, все тепловые потребители постепенно отключаются и себестоимость электрической энергии при неизменном ее потреблении станет постоянной величиной (график 3 на рис. 4). 5. Если принять, что тариф на тепловую энергию соотносится с ее себестоимостью через постоянный коэффициент, то минимальным и максимальным значением тарифа соответствуют значения себестоимости, которые и определяют зону ее возможного регулирования (квадрат АВСД на рис. 5). В пределах этой зоны каждому значению тарифа на тепловую энергию будет соответствовать своя себестоимость тепловой энергии, свой график Гинтера, определяемый тепловой нагрузкой ТЭЦ, и своя точка на графике определяющая соотношение себестоимости тепловой и электрической энергии. Таким образом, при неизменном электропотреблении фактический график соотношения себестоимостей учитывающий временную перспективу будет примерно соответствовать линии АС. 6. Следующим шагом необходимо принять во внимание, что в рыночных условиях увеличение себестоимости электроэнергии приведет к ее невостребованности, уменьшению объема продаж и, соответственно, еще большому росту себестоимости. Учет этого фактора еще более изменяет график Гинтера превращая его в экспоненту (рис. 6). График 1 на рис. 6 соответствует краткосрочному соотношению себестоимостей, а СЕ – долгосрочному, поэтому по ним можно прогнозировать временное изменение себестоимости электрической энергии при разных уровнях себестоимости (тарифов) тепловой энергии (векторы FF и GG ). Становится понятно, что повышение тарифов на тепловую энергию выше определенной величины в рыночных условиях, когда нельзя директивно сохранить потребителя, может привести к полному экономическому краху ТЭЦ. То, что отключение потребителей от большинства ТЭЦ продолжается, показывает по какому вектору на графике идет процесс рыночных преобразований. Что же делать? 1. Разобраться в ситуации для каждой ТЭЦ. Определить возможные объемы переключения тепловой нагрузки на ТЭЦ, включая возможный перевод существующих крупных котельных в пиковый режим. Опросом возможных и существующих потребителей выяснить, на каких условиях они готовы не отключаться от ТЭЦ, либо присоединять свою нагрузку. 2. Создать в АО-энерго службы (имеющие большие полномочия) по работе с клиентами, с задачами привлечения и удержания клиентов. Реформировать систему выдачи технических условий на подключение потребителей к тепловым сетям, максимально упростив процедуру и нацелив работу службы на нахождение вариантов, максимально приемлемых для клиента. 3. Рассчитать прогнозные графики соотношения себестоимости при разных уровнях тарифа на тепловую энергию и определить его оптимальную величину. Как можно быстрее, до введения свободного рынка электроэнергии, решиться на введение пониженных тарифов на тепловую энергию, с компенсацией недополученных доходов увеличением цены на электрическую энергию. 4. Ввести не просто пониженные тарифы, а тарифное меню позволяющее потребителю экономить при большой мощности потребления, при территориальном расположении потребителя вблизи ТЭЦ, при уменьшении максимальной мощности потребления за счет установки аккумуляторных баков ГВС и т.д., т.е. идти навстречу потребителю, создавая благоприятные условия для него и за счет этого улучшая собственную экономическую ситуацию. 5. Провести тщательный анализ существующих издержек и активно проводить программу их уменьшения. Ввести систему эффективного стимулирования персонала за снижение издержек. Осознание того факта, что возможности компенсации любых издержек повышением тарифов исчерпаны, будет способствовать поиску путей их снижения. Снижение издержек в не меньшей степени, чем увеличение подключенной мощности потребителей способствует снижению себестоимости (рис. 7). 6. Необходимо изменить соотношение тарифов на природный газ, используемый на цели теплоснабжения и теплообеспечения, устранив существующее противоречие, когда газ сжигаемый в мелких котлах покупается по низким ценам бытового газа, а жители получающие тепло из централизованной системы оплачивают тепловую составляющую по более высоким тарифам. При расчетах эффективности работы ТЭЦ на рынке электрической энергии необходимо учитывать еще 3 обстоятельства: ТЭЦ расположены в черте города или около него и затраты на передачу электрической энергии потребителям будут минимальны; с ростом стоимости природного газа экономический эффект от теплофикации и конкурентоспособность ТЭЦ по сравнению с простым сжиганием топлива будут увеличиваться; экологические налоги неизбежно будут увеличиваться и относительные затраты на ТЭЦ будут значительно ниже. Если все же для конкретной ТЭЦ расчеты покажут невозможность обеспечения ее конкурентоспособности на рынке электрической энергии, остается только путь привлечения инвестиций в ее модернизацию, либо строительство новой современной ТЭЦ. Содержание убыточных ТЭЦ, какое то время придется осуществлять за счет надбавки к тарифам на электроэнергию для всех потребителей страны. У неэффективных ТЭЦ нет будущего, как нет их и у систем централизованного теплоснабжения на базе крупных котельных. Отключение потребителей от них проводит к лавинообразному росту удельных издержек и лавинообразному развалу системы. Улучшение экономической ситуации в стране ускоряет этот процесс, т.к. количество потребителей имеющих средства на отключение увеличивается. Создание условий для привлечения реальных частных инвестиций в системы теплоснабжения из области желаний перемещается в область острейшей необходимости. Вывоз строительного мусора. Лиц 470231. Вывоз строительного мусора большей. Отсутствие государственного регулирования. Инвестиционное предложение. Энергоэффективность. Поташник с. Предложения эско 3э по повышению. Главная страница -> Переработка мусора |