Главная страница -> Переработка мусора
Современные технические и программные средства аскуэ. Вывоз мусора. Переработка мусора. Вывоз отходов. СтроительствоК.т.н. В. А. Петрущенков, главный инженер; В. В. Васькин, главныйконструктор, ЗАО «Невэнергопром» Введение Для проектируемых мини-ТЭЦ при определении привычных показателей экономической эффективности, таких как прибыль и срок окупаемости, необходимо иметь в виду ряд обстоятельств, обсуждаемых в настоящей статье. Под мини-ТЭЦ здесь понимается вновь вводимое в работу оборудование, производящее электроэнергию и теплоту в виде потока горячей воды (пара). На практике применяются три типа электрогенерирующего оборудования: паровые турбо-установки (противодавленческие или конденсационные турбины, в том числе с отборами пара), газотурбинные установки с паровой или водяной утилизацией теплоты отходящих газов, генераторные установки на базе двигателей внутреннего сгорания (газопоршневые, газодизельные, дизельные) с утилизацией теплоты систем двигателя и выхлопных газов. Обычно электрогенераторы мини-ТЭЦ работают в параллель с энергосистемой. Производимая на мини-ТЭЦ электроэнергия, как правило, потребляется предприятием, при котором создана мини-ТЭЦ. Излишки или вся производимая электроэнергия могут подаваться в сеть с ее оплатой или применением взаимозачета во взаимоотношениях предприятия с энергосистемой. Создание мини-ТЭЦ «в чистом поле» 1. Рассмотрим вариант создания мини-ТЭЦ «в чистом поле», владельцем которой является частная энергетическая компания, производящая ТЭ и ЭЭ на продажу внешним потребителям. В этом случае при определении себестоимости производимых теплоты и электроэнергии требуется разделение затрат топлива, эксплуатационных и прочих затрат, амортизационных отчислений между этими продуктами. Необходимость определения себестоимости электроэнергии и теплоты по отдельности связана с тем, что тарифы на продажу электроэнергии Тэ и теплоты Тт в настоящее время утверждает Региональная энергетическая комиссия (РЭК). Можно ожидать, что при утверждении тарифов РЭК будет допускать различную рентабельность производства теплоты и электроэнергии, что должно определить испособ экономически выгодного разделения затрат. Ниже приводятся способы разделения затрат топлива, которые используются на практике при выполнении предпроектных проработок вариантов строительства мини-ТЭЦ. Для мини-ТЭЦ на базе противодавленческих паровых турбин широкораспространен метод разделения топлива, следующий из уравнения энергетического баланса, примененного к работе котельной до строительства мини-ТЭЦ и к котельной, работающей совместно с мини-ТЭЦ: где B - расход топлива в единицу времени в котельной до строительства мини-ТЭЦ, АВ - дополнительный расход топлива в котельной при работе паровых турбин, riK0T - КПД котельной по преобразованию теплоты сгорания топлива в теплоту, Qкот - тепловая нагрузка теплоисточника, Qрн - низшая теплота сгорания топлива, Nэ -электрическая мощность мини-ТЭЦ. В приведенных уравнениях считается, что riK0T одинаков до и после ввода в работу паровых турбин. Это связано с тем, что КПД котельной слабо зависит от нагрузки котлов вблизи номинальных значений, тем более при небольшом ее изменении (изменение нагрузки котлов составляет несколько процентов AB/B=N3/QK0T). Из приведенных уравнений дополнительный расход топлива при вводе в работу мини-ТЭЦ равен: Удельный расход топлива на выработку электроэнергии определится b3=AB/N3=1/(Til Общий годовой расход топлива на мини-ТЭЦ, работающей в режиме полной когенерации, равен Вгод=bэЭэ+bтЭт. Приведенный способ разделения топлива соответствуют так называемому «физическому методу». Очевидно, что общий расход топлива на мини-ТЭЦ не зависит от способа разделения топлива между теплотой и электроэнергией. Остальные затраты могут разделяться также пропорционально произведенным количествам разных видов энергии. При сформировавшихся рыночных ценах на теплоту и электроэнергию общая прибыль мини-ТЭЦ от продажи энергоносителей также не зависит от способа определения себестоимости теплоты и электроэнергии. В случае отсутствия утилизации теплоты принимается гит=гэ (ri3 - электрический КПД установки, обычно hэ=0, 2 0,35 для ГТУ и т]э=0,35 0,42 для ГПА). Следует иметь в виду, что электрический КПД установки ri3 зависит от ряда параметров энергетического цикла и от величины ее нагрузки. Общий расход топлива на мини-ТЭЦ равен B=N3/(QpTi3). При частичной утилизации теплоты, обычно имеющей место в межотопительный период, общий расход топлива установки определяется точно так же. Разделение затрат топлива между электроэнергией и теплотой в этом случае зависит от вкусовых предпочтений исполнителя. Один из вариантов, соответствующий «физическому методу», состоит в том, что удельные затраты топлива по-прежнему определяются по соотношению Ьэ=Вэ/Мэ=1/(т1ит0р)=145 г у.т./кВт.ч при расчетном значении коэффициента использования теплоты сгорания топлива т]итр=0,85, тогда неиспользованная теплота топлива относится на процесс производства теплоты, и расход топлива на производство теплоты равен: где Qт - мощность полезно используемого потребителями теплового потока. В альтернативных вариантах можно делить общий расход топлива в любой другой пропорции, включая случаи, когда сохраняется значение bT=BT/QT=1/(riMTQp)=168 кг у.т./Гкал и неиспользованная теплота сгорания топлива относится на производство электроэнергии, либо относить все затраты топлива на производство электроэнергии, считая утилизируемую теплоту бесплатной. Возможно также применение способа разделения затрат топлива по методике ОРГРЭС, используемого для ТЭЦ ОАО «РАО ЕЭС» с 1995 г. В соответствии с Федеральным Законом № 35 от 26.03.2003 «Об электроэнергетике» в дальнейшем в результате реформирования ОАО «РАО ЕЭС» цены на производимую электроэнергию будут определяться рыночными механизмами. Можно предположить, что со временем цены на теплоту также будут определяться спросом и предложением в конкретном месте. Годовая чистая прибыль на мини-ТЭЦ за счет производства электроэнергии и теплоты определится как разность выручки V от их продажи и себестоимости C их производства на мини-ТЭЦ с налоговыми отчислениями Н. Простой срок окупаемости капитальных затрат К на строительство мини-ТЭЦ в этом случае равен: Годовая выручка от продажи произведенных на мини-ТЭЦ электроэнергии Ээ и теплоты Эт по тарифам Тэ, Тт равна: V=ТэЭэ+ТтЭт. Годовая себестоимость теплоты и электроэнергии, произведенных на мини-ТЭЦ, определяются годовыми затратами топлива Вгод при цене топлива Цт, затратами на эксплуатацию Сэ, ремонты Ср, заработную плату персонала Сзп, прочие затраты Спр, величиной амортизационных отчислений А=nаК с годовой нормой средних амортизационных отчислений nа, определяемой исходя из норм амортизации различных групп основных средств, составляющих мини-ТЭЦ (см. Постановление Правительства РФ от 1 января 2002 г. № 1 «О Классификации основных средств, включаемых в амортизационные группы» с учетом Изменений и дополнений, утвержденных постановлением Правительства РФ от 9 июля 2003 г. №415): С=ЦтВгод+Сэ+Ср+Сзп+Спр+А (1) Годовые затраты топлива Вгод с теплотворной способностью Qрн на мини-ТЭЦ связаны с годовой выработкой электроэнергии Ээ с помощью среднегодового электрического КПД когенерационной установки ri3Cp: Br0fl=33/(QpTi3Cp). Главными составляющими налоговых отчислений при определении прибыли обычно являются налог на прибыль и налог на имущество с нормами рп ири соответственно: Приведенный выше срок окупаемости предполагает использование амортизационных отчислений для воспроизводства мини-ТЭЦ после завершения ее срока службы. В случае использования амортизационных отчислений для других целей срок окупаемости будет равен: С точки зрения рыночной экономики тарифы на энергоносители, производимые на мини-ТЭЦ, должны определяться исходя из капитальных затрат на присоединение к существующим в этом же месте альтернативным источникам энергоснабжения (или создание новых) Ка и соответствующих тарифов ТNа, ТЭа, ТТа, например, в виде сети энергосистемы и котельной, или тепловой сети. Следует отметить, что новое присоединение к электрическим и тепловым сетям (строительство котельной) требует капитальных затрат Ка, соизмеримых с затратами на строительство мини-ТЭЦ, а тарифы, по которым альтернативные источники будут отпускать электроэнергию и теплоту, превышают на десятки процентов их себестоимость на мини-ТЭЦ. Получим соотношение для срока окупаемости при использовании затратных характеристик альтернативного энергоисточника. Фактически величина срока окупаемости zок представляет собой период времени, в течение которого суммарные затраты при строительстве мини-ТЭЦ и в альтернативном варианте энергоснабжения от электрической сети и существующей внешней тепловой сети (создаваемой котельной) будут равны. Равенство затрат за время z с учетом налоговых отчислений в обоих вариантах дает: Очевидно, что если время службы мини-ТЭЦ z>zок, то строительство мини-ТЭЦ - более выгодное мероприятие в сравнении с альтернативным вариантом присоединения к электрической сети и тепловой сети (создаваемой котельной) и наоборот. Капитальные затраты, связанные с альтернативным вариантом энергоснабжения предприятия, равны Ка=Каэ+Кат (например, плата за присоединение к электрической сети, на прокладку кабеля и строительство распределительного устройства - Каэ, стоимость котельной или стоимость присоединения к существующим тепловым сетям, стоимость тепловой сети - Кат). Годовые затраты на покупку электроэнергии и теплоты в альтернативном варианте энергоснабжения складываются из помесячной оплаты заявленной электрической мощности величиной Nni, годовых значений израсходованных электроэнергии Ээ и теплоты Эт по тарифам ТNа, ТЭа, ТТа соответственн: 2. Мини-ТЭЦ отпускает теплоту и электроэнергию предприятию, которому она принадлежит. В этом случае отсутствует прямой акт продажи электроэнергии и теплоты, но имеет место продажа продукции, производимой предприятием, в себестоимость которой входят затраты на энергоносители. Определение срока окупаемости мини-ТЭЦ, как части предприятия, можно произвести, сделав ряд допущений. Предположим, что цена на продукцию, производимую предприятием, после строительства на нем мини-ТЭЦ такая же, как и у конкурентов. Пусть отличия в себестоимости продукции состоят только в разных затратах на теплоту и электроэнергию. В связи с более низкими затратами на мини-ТЭЦ на их производство имеется большая прибыль при реализации продукции, производимой на рассматриваемом предприятии. Поэтому, несмотря на то, что нет прямого акта продажи энергоносителей, при определении чистой прибыли от производства электроэнергии и теплоты необходимо так же, как и в ранее рассмотренном варианте, учитывать налог на прибыль, входящий в цену продукции предприятия. Увеличение прибыли на предприятии определится как разность годовых затрат на энергоносители у конкурентов Тк, их себестоимости C и налоговых отчислений Н на мини-ТЭЦ. Фактически Тк - годовая затратная составляющая на электроэнергию и теплоту в цене на продукцию конкурентов при равных ее объемах. Ее величина равна сумме затрат на производство энергоносителей, рентабельности, характерной для выпускаемой продукции и налогов на эти составляющие у конкурентов. В этом состоит существенное отличие от ранее рассмотренного варианта, когда выручка определялась альтернативным вариантом энергоисточника в том же месте, где расположено рассматриваемое предприятие. С учетом замены Та на Тк действительны все приведенные выше соотношения. Следовательно, величина прибыли от производства энергоносителей и срок окупаемости мини-ТЭЦ зависят от статусамини-ТЭЦ (самостоятельный энергоисточник или энергетическое подразделение предприятия), задач, которые она решает, способа формирования цен на энергоносители, цен на продукцию предприятия. В связи с этим, прибыль и срок окупаемости капиталовложений в строительство мини-ТЭЦ носят условный, иллюстративный характер, их роль сводится к ориентации инвесторов и предпринимателей относительно вариантов энергообеспечения различных объектов. Создание мини-ТЭЦ при существующей котельной, обеспечивающей теплотой предприятиеи внешнюю тепловую сеть В этом случае получили распространение два варианта определения экономичности мини-ТЭЦ: как самостоятельного объекта и как модернизированного энергоисточника, в состав которого она вошла. 1. Рассмотрим мини-ТЭЦ как отдельный объект, пристроенный к котельной, который отпускает теплоту Этп и электроэнергию Ээп предприятию, которому она принадлежит, а также - в тепловые и электрические сети Этс, Ээс по тарифам Тэтэц, Тттэц, которые утверждаются РЭК (в будущем определяются рыночными механизмами), исходя из себестоимости и назначенной рентабельности производства энергоносителей. Срок окупаемости мини -ТЭЦ равен: где V - выручка от продажи в сети электроэнергии и теплоты V=T3T3l4-33C+TTT3l4-3TC, TK - затратная составляющая на электроэнергию и теплоту в цене напродукцию конкурентов при равных ее объемах, где rп - рентабельность выпускаемой продукции, Нк - соответствующие налоговые отчисления. Себестоимость С произведенных продуктов и налоги Н на мини-ТЭЦ для предприятия и на продажу (Ээс+Этс+Ээп+Этп) определяются по аналогии с (1, 2), исходя из соответствующих затрат топлива и других компонентов себестоимости. При определении величины теплоты, производимой мини-ТЭЦ и котельной, возникает проблема ее разделения между ними. Очевидно, что при сохранении тепловой нагрузки теплоисточника тепловая нагрузка котельной формально уменьшается на величину тепловой мощности мини-ТЭЦ. Однако такое разделение является условным, т.к. между котельной и мини-ТЭЦ существуют связи материальных потоков и для нормального функционирования энергоисточника необходима работа оборудования котельной и мини-ТЭЦ. Например, для мини-ТЭЦ на базе ГТУ или ГПА с утилизацией теплоты оборудование котельной обеспечивает подпитку утилизационных контуров. В случае использования паровых турбин на мини-ТЭЦ ее зависимость от котельной еще значительнее: пар, поступающий в турбины, вырабатывают паровые котлы котельной. Поэтому необходимо определить и в себестоимости теплоты, вырабатываемой на мини-ТЭЦ, и в выручке от продажи этой теплоты доли котельной и мини-ТЭЦ. Однозначно выполнить такое разделение затруднительно, любой метод деления будет носить условный характер. В практике часто встречаются два предельных подхода: на ГТУ-ТЭЦ и ГПА-ТЭЦ вся теплота, производимая в утилизационных теплообменниках, относится на мини-ТЭЦ как по затратам, так и по выручке, на мини-ТЭЦ с паровыми турбинами напротив, вся теплота, производимая в пароводяных теплообменниках мини-ТЭЦ, относится к котельной. В соответствии с принятым способом разделения используются соотношения, приведенные выше. 2. Более ясным и бесспорным кажется рассмотрение характеристик модернизированного энергоисточника, состоящего из котельной и мини-ТЭЦ. В этом случае определяются выручка от продажи электроэнергии и теплоты, произведенных в котельной и на мини-ТЭЦ, во внешние сети, рыночная стоимость производства электроэнергии и теплоты, используемых предприятиями-конкурентами, и соответствующие затраты на мини-ТЭЦ. При этом в основных фондах энергоисточника учитывается как остаточная стоимость котельной, так и капитальные затраты на строительство мини-ТЭЦ. Однако в этом случае возникает проблема разделения общей прибыли энергоисточника между мини-ТЭЦ и котельной. Если всю прибыль энергоисточника использовать на окупаемость мини-ТЭЦ, то это означает, что прибыль от тепла, произведенного в котельной, используется для окупаемости мини-ТЭЦ. В условиях, когда мини-ТЭЦ и котельная принадлежат одному хозяину, и уже окупившей себя котельной такое использование средств является естественным, но может показаться несправедливым инвестору. О проблеме разделения теплоты, произведенной в оборудовании мини-ТЭЦ и соответствующей прибыли, между мини-ТЭЦ и котельной говорилось выше. Вероятно, разделение все-таки необходимо производить, т.к. оно связано с сутью произошедших изменений. Снижение роли котельных в выработке теплоты и ухудшение показателей выработанной ею теплоты является неизбежным и компенсируется модернизацией энергетического комплекса в целом и повышением срока службы котельной в связи с более щадящим режимом ее работы. Выводы Приведенные выше соображения, возникающие при определении прибыли мини-ТЭЦ, сроков ее окупаемости, показывают, что необходима определенность в целом ряде вопросов, являющаяся вкусовой, не имеющей нормативного характера. Поэтому в настоящее время при выполнении технико-экономических расчетов требуется согласование с Заказчиком всех условий, для которых производится определение технико-экономических показателей, в частности, таких привычных, как прибыль и срок окупаемости. Следует отметить, что учет реальной динамики денежных потоков с дисконтированием для выбранной схемы финансирования изменит значения сроков окупаемости, но и в этом случае потребуется принятие конкретных решений для вопросов, затронутых выше.
Щуров В.М. (АО ВНИИЭ), Бочков Б.С. (АО Институт Энергосетьпроект ) В настоящее время актуальность создания в энергосистемах и их объединениях автоматизированных систем коммерческого учета и контроля электроэнергии и мощности (АСКУЭ) уже ни у кого не вызывает сомнения. Работы в этом направлении ведутся практически во всех энергосистемах и ОЭС. Основой интегрированных АСКЭ АО-энерго являются системы АСКУЭ энергетических объектов, расположенных на территории АО-энерго, - электростанций, подстанций, промпредприятий. Именно в АСКУЭ объектов формируется и передается на вышестоящие уровни управления (в центры сбора и обработки информации АСКУЭ) вся исходная информация по электроэнергии и мощности, необходимая ФОРЭМ и РРЭМ и именно от программно технических средств АСКУЭ объектов в основном зависит правильность и эффективность работы интегрированной АСКУЭ в целом. Технические средства АСКУЭ объектов включают: · электросчетчики, оборудованные числоимпульсными и (или) цифровыми интерфейсами; · устройства (контроллеры) сбора и передачи данных (УСПД); · средства передачи информации поканалам связи (модемы); · средства вычислительной техники (персональные ЭВМ). В настоящее время заводы и предприятия Российской федерации производят широкую гамму трехфазных электронных и микропроцессорных электросчетчиков (индукционные и однофазные электросчетчики, а также класса ниже 1,0 здесь не рассматриваются), позволяющих их использовать в системах АСКУЭ. Основными изготовителями являются: Концерн Энергомера (г. Ставрополь) выпускает электронные электросчетчики активной электроэнергии в одном и двух направлениях кл. 0,2 (ЦЭ6808В), кл. 0,5 (ЦЭ6805В), кл. 1,0 (Ф68700В) и микропроцессорные ЦЭ6822,ЦЭ6823, ЦЭ6850 класса 0,5 и 1,0. Электронные электросчетчики имеют числоимпульсный, а микропроцессорные - еще и цифровой интерфейс. СП Метроника (г. Москва) выпускает многофункциональные микропроцессорные электросчетчики серий АЛЬФА, А2 АЛЬФА Плюс, ЕвроАЛЬФА кл. 0.2S, 0,5S, 1,0. Все они имеют числоимпульсный и цифровые (ИРПС, RS-232, RS-485) интерфейсы. Мытищинский электротехнический завод (Московская обл.) производит электронные электросчетчики ПСЧ-4, СЭТА-1 кл. 0,5, СЭТА-1 и СЭТР-1 кл. 1,0, снабженные числоимпульсным интерфейсом. Нижегородский завод им. Фрунзе производит электронные электросчетчики ПСЧ-4ПА, ПСЧ-4-1 кл. 0,5 с числоимпульсным интерфейсом и микропроцессорные электросчетчики ПСЧ-4ТА, СЭТ-4ТМ кл.0,5 с числоимпульсным и цифровым интерфейсом (RS-485). Государственный Рязанский приборный завод выпускает электронные электросчетчики СЭТ3а-01, СЭТ3а-01П кл. 0,5;1,0; СЭТ3р-01-09 кл.1- последний для измерения активной и реактивной электроэнергии в одном корпусе. Все электросчетчики имеют числоимпульсный интерфейс с двумя гальванически развязанными выходами. Все выпускаемые заводами микропроцессорные электросчетчики имеют встроенные часы и память для запоминания графика мощности и других параметров и позволяют вести многотарифный учет. Таким образом, можно отметить, что Российские производители электросчетчиков полностью удовлетворяют спрос систем АСКУЭ как по классам точности, так и по своим функциональным и техническим возможностям. К недостаткам следует отнести отсутствие унификации протоколов и циклов доступа к информации микропроцессорных электросчетчиков. По нашему мнению, производители микропроцессорных электросчетчиков излишне увлечены многофункциональностью, в т.ч. показателями качества и многотарифностью, при этом набор параметров для пользователей оказывается избыточен, а для целей АСКУЭ недостаточен. Устройствами, специализированными для целей АСКУЭ являются УСПД. Требования к ним определены отраслевым документом Типовые технические требования к средствам автоматизации, контроля и учета электроэнергии и мощности для АСКУЭ энергосистем , утвержденным РАО ЕЭС России в 1994г., который хотя и нуждается в некоторой переработке, но до настоящего времени не утратил актуальность. Современные микропроцессорные КТС АСКУЭ включают не только УСПД, но и программно-технические средства для сбора и обработки информации, как на самом объекте, так и на вышестоящем уровне управления и образуют программно-технические комплексы (ПТК) АСКУЭ. В настоящее время из современных российских ПТК АСКУЭ наибольшее распространение в энергосистемах получили ПТК «ТОК-С» (АОЗТ , г. Пенза) - энергосистемы Средней Волги, Урала, Центра; КТС (ПО «СТАРТ», г. Заречный, Пензенская обл.). Последний применяется преимущественно на промышленных предприятиях. За ними следует ПТК (ИТФ «Системы и технологии», г. Владимир) - энергосистемы Центра, а также ПТК АЛЬФА - Смарт с семейством УСПД RTU-300 производства СП АББ-ВЭИ (г. Москва) - Колэнерго, предприятия МПС, метрополитена. Из импортных УСПД, усилиями ЦДУ ЕЭС на многих межсистемных подстанциях ОЭС Северо-Запада и Урала установлены УСПД производства Венгерской фирмы Ганц-Шлюмберже. Можно также назвать ряд ПТК АСКУЭ, получивших применение в отдельных энергосистемах и на отдельных объектах: - это УСПД типа «Пчела» (НПФ , г. Екатеринбург) - на подстанциях и предприятиях Свердловэнерго; ПТК ЭКОМ с УСПД ЭКОМ-3000 ( НПФ Прософт-Е , г. Екатеринбург) - на ряде электростанций и промпредприятий; ПТК СПРУТ с УСПД МАВР 102М (Фирма ОВ , г. С-Петербург) - на ТЭЦ и ряде промпредприятий; КТС (концерн Энергомера , г. Ставрополь) - на подстанциях Ставропольэнерго; ПТК УИС (НПФ Неон АВМ , г. Москва) - на подстанциях электрических сетей; ПТК Мир с УСПД Омь-40 (НПО МИР, г. Омск) - на нефтяных предприятиях и подстанциях. Этот перечень может быть продолжен. Имеются системы АСКУЭ с прямым (без УСПД) съемом информации с микропроцессорных электросчетчиков, такие как Альфа МЕТ с мультиплексором МПР-16-2М (Метроника), Тариф -Микро с контроллером связи КСИ-1 (Нижегородский завод им. Фрунзе), программный комплекс Нижневартовских электрических сетей (г. Нижневартовск). Широкое распространение получил программный комплекс сбора информации с микропроцессорных электросчетчиков и УСПД АСКП (ЦДУ ЕЭС, ЭЦМ). Большинство из перечисленных ПТК АСКУЭ удовлетворяют типовые требования, сертифицированы и подтвердили свою работоспособность на практике. Таким образом можно констатировать, что Российские производители ПТК АСКУЭ в состоянии удовлетворить практически любые потребности как энергосистем, так и промпредприятий вполне современными техническими средствами АСКУЭ. К недостаткам производимых ПТК следует отнести отсутствие стандартизации протоколов обмена между различными УСПД и центрами сбора информации. Каждый ПТК имеет свой программный пакет верхнего уровня, невзаимодействующий с программами других изготовителей ПТК АСКУЭ. Для передачи информации с объектов в центры сбора и обработки информации АСКУЭ повсеместно используются коммутируемые и выделенные каналы связи. Для подстанций напряжением 110 кВ и ниже критичным является само наличие каналов связи. В центрах сбора и обработки информации для решения задач АСКУЭ применяется стандартная вычислительная техника. Текущий период характеризуется активной деятельностью практически во всех ОЭС, МЭС и АО-энерго по внедрению и развитию систем АСКУЭ. При этом произошли серьезные качественные сдвиги. Более чем в сорока АО-энерго России системы АСКУЭ введены в промышленную эксплуатации и имеют статус коммерческих систем. Если в прежние годы собираемая АСКУЭ информация использовалась как справочная и как информация для технического учета, то в эксплуатируемых коммерческих системах она задействуется для финансовых расчетов на ФОРЭМ и расчетов с потребителями. Существенно вырос технический потенциал и квалификация персонала МЭС, АО-энерго, Энергосбытов, электростанций и электрических сетей, обслуживающего программно-технические комплексы АСКУЭ. Практически повсеместно организованы соответствующие группы (подразделения) специалистов. При внедрении АСКУЭ в АО-энерго повсеместно приоритет отдается АСКУЭ ФОРЭМ, охватывающим межсистемные и межгосударственные перетоки, генерацию федеральных и атомных электростанций, а также собственную генерацию АО-энерго. Системы АСКУЭ в последнее время стали широко внедряться на промпредприятиях и шагнули к бытовым потребителям. Для успешного дальнейшего развития АСКУЭ ФОРЭМ ЕЭС России целесообразно: · Обновить нормативно - методическую документацию, включая Типовые технические требования к средствам автоматизации контроля и учета электроэнергии и мощности, Типовую инструкцию по учету электроэнергии (РД 34.09.101-94) и Концепцию по созданию автоматизированной системы контроля и учета электроэнергии и мощности в РАО ЕЭС России . · Разработать методические материалы по АСКУЭ ОДУ в виде типовых технических требований. · Разработать типовые ТУ АСКУЭ потребителей для подготовки их выхода на ФОРЭМ. · Подготовить рекомендации по унификации характеристик средств учета электроэнергии и его автоматизации: - Состава вычисляемых и запоминаемых параметров, а также протоколы считывания данных в микропроцессорных электросчетчиках; - Протоколов обмена информацией УСПД с центрами сбора информации. Вывоз металлолома в Москве Компания Антатранссервис сможет организовать работу по вывозу металлолома в короткие сроки и в любых количествах. Для этого у нас есть необходимый парк мусороуборочной техники и грамотные специалисты с опытом работы. Погода на 10 лет. Россия должна сокращать выбросы. Нзф начал разрабатывать установк. О мерах по улучшению системы уче. Украина может сэкономить около 3. Главная страница -> Переработка мусора |