Главная страница ->  Переработка мусора 

 

Скупой платит меньше. Вывоз мусора. Переработка мусора. Вывоз отходов. Строительство


Олег Фаворский,
действительный член РАН

 

Население Земли в ближайшие 50 лет увеличится (по различным оценкам) с 6 до 12:15 млрд человек, что неизменно повлечет и существенное увеличение потребления энергии. В первую очередь, это рост производства электрической энергии как основы комфорта в быту и на работе, базы широко развивающейся информационной техники и любых систем автоматизации и организации труда. Другой областью безусловного экстенсивного роста будет транспорт, в первую очередь, авиационный и автомобильный с соответствующим увеличением объемов потребления топлива. Уже только эти две отрасли для своего развития требуют значительного увеличения объема соответствующих машиностроительных производств, дополнительных кадров и опять-таки энергетических затрат. Надо помнить, что, учитывая приведенные тенденции, высокоразвитые индустриальные государства согласились одной из главных задач начала XXI века считать энергосбережение во всех областях жизни и производства. Действительно, в последнее десятилетие в ряде стран при заметном росте валового национального продукта наблюдалось некоторое снижение потребления энергии (топлива). Этот опыт, конечно, будет учтен развивающимися странами, но, тем не менее, потребности Мира в энергии будут заметно расти.

 

При использовании термина энергия сейчас обычно понимают четыре составляющие: - природное органическое топливо: основное (нефть, газ, уголь) и второстепенное по объему использования (сланцы, древесина и отходы быта и производств). Они идут на производство электроэнергии и механической работы (включая транспорт), на получение бытового и промышленного тепла (горячая вода и пар) и как сырье в промышленность; - электроэнергия и тепло от атомных электростанций; - электроэнергия от гидравлических электростанций; - электроэнергия и тепло от так называемых возобновляемых источников энергии - ветряных, солнечных, геотермальных.

 

Преобразование энергии топлива (его теплотворной способности при сжигании в воздухе) в механическую работу обеспечивает комфортность нашей жизни и возможность работы большей части человечества. Механическая работа при этом понимается как приведение в движение любых объектов - от газонокосилок до автомобилей, самолетов и генераторов электрической энергии.

 

Как известно, из всей энергии, используемой населением Земли, 90 % обеспечивается сжиганием органических топлив (угля - 28 %, нефти - 39 % и газа - 23 %). Почти 10 % от этого количества дают атомные и гидроэлектростанции и очень небольшую часть (доли процентов) - так называемые возобновляемые источники энергии - ветряные установки, солнечные, геотермальные и приливные электростанции. Безусловно, их роль будет расти, но, по прогнозам, даже к 2050 г. вряд ли превысит 2:3 %. Иначе говоря, главными все-таки будут органические топлива.

 

Обеспечение электроэнергией и теплом в современном мире является основой благосостояния и развития общества и любого государства. Стабильность существования и возможность работы любых отраслей деятельности населения определяются, в первую очередь, безопасностью и надежностью систем теплоэнергетики. И подтверждением этому служат периодически проявляющиеся в различных регионах мира нарушения их работы, когда целые области остаются без электроэнергии, люди застревают на часы в метро и лифтах, замерзают системы отопления в домах и т.п.

 

Абсолютно ясно, что как экономические затраты на теплоэнергетику, так и ее воздействие на природную среду и самого человека необходимо предельно снижать. Для всего человечества это дело не только сегодняшнего дня, но и ближайшего будущего. Без громких слов и лозунгов надо просто работать для обеспечения возможности нормальной жизни наших детей, внуков, т.е. следующих поколений.

 

Жидкое топливо для транспорта (бензин, дизельное топливо, авиакеросин) пока останется основным, хотя человечеству необходимы и оно будет осваивать экологически более выгодные топлива: в первую очередь - основная часть природного газа, метан (в сжиженном виде), а затем и самое лучшее топливо - водород.

 

Природный газ - пока лучшее органическое топливо из широко используемых, так как в нем меньше углерода и больше водорода, чем в нефти, тем более, - в угле. В связи с этим в продуктах его сгорания меньше углекислого газа (СО2) и практически нет сернистой составляющей (SОх). При его использовании легче избавиться от сажи (С) и окиси углерода (СО), и максимально снизить выброс вредных окислов азота (NOх). Водород по тем же причинам - экологически максимально чистое топливо. Насущная задача техники ближайших поколений - обеспечение широкого использования таких топлив с максимальными коэффициентами полезного действия.

 

Все изложенное выше показывает, что стремление обеспечить достойное развитие будущего человеческого общества на Земле требует особо бережного расходования органических полезных ископаемых - основы современных топлив. Это вызвано, прежде всего, стремлением ограничить экологический ущерб от воздействия продуктов сгорания любых топлив: увеличения парникового эффекта (повышение температуры окружающей нас среды) в результате прироста процентного содержания углекислого газа (СО2) в атмосфере. И, что может быть даже более важно, сейчас уже достаточно обоснованно установлено, что при таком потреблении запас нефти может быть исчерпан в ближайшие десятилетия, и лишь чуть позже - природного газа. Это очень скоро остро поставит вопрос перед человечеством об их максимальной экономии.

 

В России создана хорошая, серьезная гидроэнергетика. Она обеспечивает 20 % потребляемой электроэнергии и, что очень важно, возможность регулирования при переменном потреблении. Ее следует бережно поддерживать и дополнительно развивать в регионах, где не надо строить больших водохранилищ, а можно использовать, например, горные реки. Однако, нужно очень внимательно рассматривать предложения по строительству ГЭС в равнинных областях, взвешивать экологические последствия такого решения.

 

Также вряд ли реально говорить сейчас о необходимости и целесообразности массового проектирования и строительства атомных станций. В то же время надо всеми силами поддерживать атомную отрасль. В первую очередь - из-за необходимости сохранения богатейших запасов знаний, которые накоплены в атомной науке и технике. Они могут в достаточно близком будущем (наверно уже через 30-50 лет, когда станет плохо с органическими топливами) создать возможность широкого применения эффективных и безопасных АЭС. В атомной энергетике России надо закончить доработку безопасности как тех АЭС, что уже созданы, так и новых, в которых имеется значительный строительный задел. Особо следует сказать о важности и перспективности новых работ по созданию атомных электростанций с реакторами на быстрых нейтронах и замкнутым топливным циклом. Наверное, надо также активно создавать маленькие атомные станции (десятки МВт) для тех регионов, где нужна энергия, а топливо завозить трудно и дорого. Но это опять-таки все еще не массовая энергетика; массовая - пока и на много лет - на органических топливах.

 

Законы термодинамики диктуют, что возможность повышения КПД при использовании топлива обеспечивается, в первую очередь, разностью температур в тепловом цикле - максимальной и минимальной (минимальная - это окружающая среда, максимальная - это то, что мы можем реализовать при сгорании топлива). Значит, чем выше максимальная температура, тем естественно выше КПД. И вот, развитием энергетики за 100 лет достигнут уровень максимальной температуры пара 600 °С (при давлении пара до 250 атм), что позволило у лучших паровых турбин получить КПД даже в идеальном цикле равный только 67 % (а в реальном цикле - всего 38:40 %). Но при повышении температуры до 1300 °С КПД цикла достигает уже 82 %. Иначе, переход на другой, более высокотемпературный, не паровой цикл, в принципе дает возможность обеспечить существенное повышение КПД. И таким средством увеличения температуры в рабочем цикле установки стали газовые турбины.

 

Газовые турбины известны давно, но активно используются в энергетике недавно. Особенно эффективными оказались комбинированные, так называемые парогазовые установки (ПГУ), где газовая турбина - первая, высокотемпературная ступень использования тепла. Ее выхлопные газы идут в котел, пар из которого поступает на паровую турбину.

 

Именно газовые турбины могут и должны стать основой развития (модификации) наших тепловых электростанций (ТЭС), превращая их из паровых в комбинированные. Применение газовых турбин реально при очень небольших объемах строительных работ на уже имеющихся ТЭС. Они во много раз легче паровых турбин и занимают намного меньше места, поскольку в них нет крупногабаритного и тяжелого парового хозяйства (котлы, насосы и др.). При этом управление ими гораздо легче автоматизируется, т.е. такие станции требуют меньше обслуживающего персонала и т.п.

 

Экономическая эффективность газовых турбин сегодня может быть весьма высокой и без применения цикла ПГУ. Так, если на выходе газовой турбины в теплообменнике выходящими газами греть воду и паром охлаждать горячий тракт турбины вместо воздуха (который очень дорог в обычном цикле), то при температуре газа 1500 °С, достижение которой ставится сейчас как задача, можно говорить об уровне КПД реального газотурбинного цикла порядка 60:62 %. А это в полтора раза лучше, чем в предельном паротурбинном цикле.

 

В парогазовых установках, которые сейчас интенсивно строятся во всем мире (к сожалению, кроме России), реализованы температуры газа до 1300 °С и уже сегодня поставляются в эксплуатацию агрегаты с электрическим КПД 57:58 %. В программах Министерства энергетики США на начало XXI века ставится задача его увеличения до 65 %. Рассматривая дальнейшее развитие парогазовых установок с добавлением на входе в газовую турбину высокотемпературных топливных элементов, можно уже сегодня говорить о достижении электрического КПД порядка 70 %. Этим тоже занимаются в ряде стран.

 

Высокоразвитые государства мира всегда вкладывали большие деньги в развитие военной техники и, в частности, авиационной. Совершенствование газовых турбин определяло уровень развития авиации, в первую очередь - авиации военной, причем на гребне прогресса были двигатели для истребительной авиации. В них максимально выжимались скорости полета в результате увеличения тяги и уменьшения габаритов двигателей. Для этого принимались максимально высокие температуры газа, и это допускалось вследствие минимального времени их эксплуатации (ресурса).

 

Для развития военной авиации с годами были улучшены конструкционные жаропрочные материалы, которые дали возможность повысить примерно на 300 °С температуру газа перед турбиной (против 700:750 °С, имевшихся в довоенных). Громадные успехи за эти же годы были достигнуты в совершенствовании систем охлаждения, т.е. в совершенствовании процессов теплообмена и газовой динамики проточной части двигателей, обеспечивших прирост температуры газа перед турбиной еще на 400:450 °С. Сегодня уровень температур перед турбиной в авиационных двигателях достигает 1300:1400 °С. Параллельно с военной авиацией, с некоторым запасом по температуре, все эти годы развивалась гражданская авиация. Еще с большим отрывом по температуре продолжалось совершенствование энергетических турбин. Но за последние 7-10 лет в связи с кризисом в военной промышленности (причем во всем мире, а не только в России!), развитие энергетических турбин в мире начало идти очень высокими темпами. Сегодня за рубежом уже продаются газовые турбины с температурой 1300 °С и на подходе с температурой 1400 °С.

 

В энергетике очень много занимались совершенствованием газотурбинного цикла. По мере роста температур увеличивалась степень сжатия, рассматривались возможности промежуточного охлаждения при сжатии и промежуточного подвода тепла при расширении, возможность регенерации тепла. В упоминавшейся выше программе министерства энергетики США по развитию газовых турбин в начале XXI века поставлена задача выхода на температуру 1500 °С, т.е. температуру, которую сейчас еще мечтает внедрить и авиационная промышленность.

 

В массовой энергетике мира широко развернута организация производства и применения газовых турбин. Сейчас заказы, например, американских фирм на газовые турбины насчитывают 200 комплектов, способных выработать 40 млн кВт, что составляет не менее трети мощности энергетики России! Этот массовый заказ в Америке показывает, что в погоне за экономикой и экологией конструкторы ставят сегодня на первое место газовые турбины.

 

Теперь о главном - с теплом у России очень плохо. Вместе с тем, если мы используем парогазовую установку, а на ее выходной системе поставим водяной котел для получения пара высокого давления с уровнем температуры порядка 150:170 °С, затем другой - для пара низкого давления, затем горячей воды, теплой воды, то, совершенствуя этим цикл по линии отвода тепла, можно использовать до 92:93 % тепла, которое содержится в топливе.

 

А России нужно, в первую очередь, тепло. Как только приходит холодный период года, так начинаются неприятности, связанные с недостатком тепла. В крупных городах России обычно создавались самые простые тепловые электростанции, где комбинировалось получение электроэнергии на паровых турбинах с большой долей выходного тепла (ТЭЦ). Примером такого использования ТЭЦ может служить Москва, где 13 станций обеспечивают город электроэнергией с избытком, хотя теплом только на 80 % (остальное - от котельных). Наша страна холодная. У нас большие площади, идет продолжение миграции, растут города. Нам нужно обеспечивать жизнь людей, работу промышленности. Сегодня в России все это покрывается (кроме ТЭЦ) почти 200 тыс. котельных. Они потребляют 46 % топлива. При этом теряется высокотемпературный потенциал продуктов сгорания, который можно использовать в газовой турбине до котла. Т.е. применение небольших ГТУ-ТЭЦ может стать эффективным путем решения этой проблемы.

 

В России, кроме трех заводов, которые производили стационарные турбины - Ленинградский металлический, Невский и Екатеринбургский, - есть 11 заводов и 14 авиадвигательных конструкторских бюро, которые сейчас практически без работы по основному профилю: в 1985 г. в России производилось до 70 типоразмеров авиадвигателей во многих тысячах штук. Эта гигантская производственная база используется в настоящее время очень плохо, так как заказы упали в десятки раз. Создавая же на базе авиадвигателей малые ГТУ-ТЭЦ взамен существующих старых котельных, можно, прежде всего, очень быстро обеспечить страну высокоэффективной, высококачественной, высокоэкологичной энергетикой. Нужно только, что очень важно, государственное поощрение малой энергетики, разработка соответствующих законов и льгот. Это все должно стать стимулом, чтобы государство на базе развитой энергетики вышло на другой экономический и экологический уровень. Следует особо отметить, что при производстве малых турбин (до 20:30 МВт) очень важно их количество. По удельным затратам металла выгодны мощности 10:20 МВт, а по удельной трудоемкости эффективнее большие турбины. Вместе с тем, увеличение выпуска - серийность - существенно снижает удельные затраты, себестоимость, и при значительных количествах (хотя бы десятки турбин) малые турбины становятся выгодны и экономически.

 

Авиадвигательные конструкторские бюро страны за последние годы проработали большое количество установок различной мощности (от 1 до 60 МВт). Проведены проектные работы, созданы до десятка опытных экземпляров, начато серийное производство нескольких типов электростанций на их основе.

 

Можно привести наиболее характерные примеры уже созданных и эксплуатирующихся ГТУ. Газотурбинная ТЭЦ мощностью 25 МВт вполне конкурентоспособная с мировыми по экономическим показателям (КПД 37 %) на базе двигателя НК-37СТ Самарского НПО им. Н.Д. Кузнецова сейчас запущена в работу в Самаре. В Перми начаты серийный выпуск и поставка 4-мегаваттной установки. Созданы ГТУ-ТЭЦ в 1,25 МВт в Санкт-Петербурге, 2,5 МВт - в Рыбинске, 10 МВт - в Уфе. Уже реализована станция в 20 МВт, созданная московской фирмой Энергоавиа .

 

В России есть хорошая научная и экспериментальная база в Центральном институте авиационного моторостроения и Институте высоких температур РАН, которая может обеспечивать все, что нужно сейчас и на ближайшие годы по совершенствованию теплообмена, экологии сжигания топлив, прочности при проектировании самых перспективных турбин. В Москве в ЦИАМ создана и работает уникальная экспериментальная база для испытания любых газотурбинных энергетических установок мощностью до 25 МВт в любых атмосферных условиях и на любых топливах. Кроме того, относительно небольшие турбины (20:30 МВт) могут быть использованы и для надстройки многочисленных паровых турбин на электростанциях с целью увеличения их мощности и КПД на 5:7 % там, где ресурс этих паровых турбин позволяет их эксплуатировать, по крайней мере, еще 10:15 лет.

 

Итак, совершенствование и электро- и теплоэнергетики России в ближайшие годы должно вестись с широким применением газовых турбин. Эта энергетическая технология не только обеспечит нужное качество нашей жизни, принципиальную стабильность, безопасность и надежность существования страны, но и даст возможность существенной экономии потребляемого топлива. Как конкретный пример возможности эффективного применения малых ГТУ-ТЭЦ можно привести регион Москва и область в системе Мосэнерго. Сейчас здесь потребляется 12 ГВт электроэнергии и 72 Гкал/ч тепла, из них ТЭЦ Мосэнерго дают 30 Гкал/ч, остальное обеспечивают котельные (большей частью - в области). Если эти котельные заменить малыми ГТУ-ТЭЦ, то можно получить дополнительно 19 ГВт электроэнергии (при прочих равных условиях), т.е. на 55 % больше, чем потребляется сегодня. А это гигантский резерв для развития региона. Первая такая ТЭЦ реализована в подмосковном городе Электросталь.

 

Широким внедрением газотурбинной техники в энергетике можно обеспечить в ближайшие 15-20 лет снижение расхода топлива в стране на 10:12 %, а газового топлива - на 25 %. Это говорит и о снижении на столько же выбросов СОх. И хотя у нас есть резерв по выбросам по сравнению с уровнем, установленным международными нормами 1999 г., внедрение газотурбинной техники увеличит этот резерв и позволит в будущем развивать энергетику, спокойно увеличивая долю угля, что очень важно для энергетической безопасности страны. Хотя газ и лучшее по всем показателям топливо, но будучи монополистом, он становится ненадежным, а потому - в государственном смысле - опасным. Поэтому одна из важнейших задач науки и техники состоит в том, чтобы через 30-40 лет снова обеспечить широкое применение угля. Но для этого нужно создавать новые эффективные технологии. Необходимо не только исследовать пути наиболее эффективной газификации угля, но и совершенствовать материалы, которые будут при этом применяться. Пора снова вернуться к решению проблем использования керамики и широкого применения композиционных материалов.

 

Газотурбинные установки России

 

Тип

 

Разработчик

 

Состояние разработки

 

Проект

 

ОКР

 

Опытный
экземпляр

 

Серийное
производство

 

ЭТВ-0-100

 

Омское МКБ

 

+

 

ЭТВД-10Б

 

Омское МКБ

 

+

 

МЭУ ДСП-1

 

ГУП Завод им. В.Я. Климова

 

+

 

Озон-1

 

ОАО Рыбинские моторы

 

+

 

Мини-ТЭЦ-2,5

 

ОАО Рыбинские моторы

 

+

 

ЭВСУ-10

 

Омское МКБ

 

+

 

ГТЭ-1500

 

ГУП Завод им. В.Я. Климова

 

+

 

ГТЭ-2500

 

ГУП Завод им. В.Я. Климова

 

+

 

ГТУ-2,5П

 

ОАО Авиадвигатель

 

+

 

ГТУ-4П

 

ОАО Авиадвигатель

 

+

 

ГТУ-6

 

ОАО Рыбинские моторы

 

+

 

НК-12СТ-6,3

 

ОАО СНТК

 

+

 

НК-14СТ

 

ОАО СНТК

 

+

 

ГТУ-95/12

 

НПО Мотор

 

+

 

ГТУ-12П

 

ОАО Авиадвигатель

 

+

 

ГТУ-16П

 

ОАО Авиадвигатель

 

+

 

НК-39

 

НПП Труд

 

+

 

НК-91

 

НПП Труд

 

+

 

ГТУ-55СТ-20

 

ЦИАМ, Тураевское МКБ Союз

 

+

 

АЛ-31СТЭ

 

ОАО А. Люлька - Сатурн

 

+

 

ГТУ-89-СТ20

 

МКБ Гранит

 

+

 

НК-36СТ-Э

 

ОАО СНТК

 

+

 

НК-37

 

НПП Труд

 

+

 

ГТУ-25ПЭ

 

ОАО Авиадвигатель

 

+

 

ГТУ-60СТЭ

 

ОАО Рыбинские моторы

 

+

 

ГТЭ-65П

 

ОАО Авиадвигатель

 

+

 

Все эти направления, решаемые совместно, дадут реальную возможность перспективного развития энергетики, по крайней мере, на обозримое время и при этом не строить фантастические прожекты с использованием экзотических видов энергии, к чему пока реальные подступы не просматриваются.

 

 

Вы обратили внимание, как часто в последнее время нас пугают глобальным потеплением климата и неотступно следующей за этим вселенской катастрофой? И как о спасении говорят о Киотском протоколе. О чем речь? Поясню: этот протокол предусматривает снижение к 2012 году мировых промышленных выбросов в атмосферу на 5,2%. …Например, вам известно, что одна только Россия ежегодно выбрасывает в атмосферу 4,5 миллиарда тонн этой гадости? А это, между прочим, 16,4% от всей планеты – третье место в мире после США и Китая.

 

Львиная доля вредных выбросов приходится на энергетику. В России, например, 98% выбросов CO2 дает сжигание ископаемого топлива: угля, газа и нефтепродуктов.

 

В 1997 году в японском городе Киото был принят Киотский протокол РКИК (Рамочной Конвенции ООН об изменении климата). Он закрепил количественные обязательства стран по ограничению и снижению поступления парниковых газов (углекислоты и метана) в атмосферу. На настоящий момент протокол подписали 84 страны (в том числе Россия). Но документ вступит в силу только после ратификации его странами, ответственными за 55% выбросов CO2 в мире.

 

Вот и получается, что проблема снижения выбросов тесно связана с проблемой энергоэффективности и энергосбережения. Об этом и поговорим.

 

Хорошо, конечно, что вопрос энергосбережения пытаются решить на уровне глав государств (впрочем, тут есть свои сложности – например, надо еще уговорить США подписать тот самый Киотский договор).

 

И что же делать? Как, кто и что может спасти ситуацию? Во-первых, лесные массивы, которые поглощают парниковые газы. Значит, чем более зеленой будет наша планета, тем лучше. А во-вторых (и это напрямую имеет отношение к нашему журналу), мы сами можем экономить электроэнергию в своем доме. «Что для этого нужно?» – спросите вы. Немного: всего лишь оснастить квартиру современными экономичными электротехническими устройствами.

 

К ним относятся, например, компактные люминесцентные лампочки, светорегуляторы, датчики движения, таймеры, сумеречные выключатели и программируемые таймеры и многое другое.

 

Да будет свет!

 

По статистике, около 50% экономии электроэнергии достигается за счет экономии освещения. Например, совсем другая ситуация будет, если лампы накаливания заменить на компактные люминесцентные лампы.

 

Производят компактные люминесцентные лампочки фирмы «Осрам» (OSRAM), Германия, «Филипс» (Philips), Голландия, «Дженерал Электрик» (General Electric), США и «Радиум» (Radium), Германия. У нас в продаже можно встретить лампы чешского и китайского производства. Причем разброс цен на одну и ту же лампу удивляет. Например, в московском магазине «1000 мелочей» лампа в 11 Вт стоит 420 рублей, а такая же лампа на строительной выставке на Нахимовском проспекте – от 316 до 350 рублей.

 

Чем же хороши компактные люминесцентные лампы по сравнению с обычными лампами накаливания? Во-первых, при их работе электроэнергии тратится в 5 раз меньше, чем при работе обычных ламп. Например, компактная 15-ваттная люминесцентная лампа дает света столько же, сколько 75-ваттная лампа накаливания.

 

Еще один плюс: если средний срок службы обычной лампы накаливания – 1000 часов, то у компактной люминесцентной лампы он составляет 15000 часов!

 

Принцип работы люминесцентных ламп

 

Электронное устройство компактной люминесцентной лампы обеспечивает ее мгновенное включение и работу без мигания. Электрическое поле между электродами заставляет пары ртути, которая входит в состав этих ламп, выделять невидимое ультрафиолетовое излучение. Нанесенный на внутренние стенки стекла люминофор преобразует ультрафиолетовое излучение в видимый свет. Подбирая сорт люминофора, можно изменять цветность света лампы.
Вы можете возразить: люминесцентные лампы некрасивы, громоздки и по дизайну не всегда подойдут для квартиры. Вовсе нет! В нашем случае речь идет не о привычных белых длинных трубочках, которые устанавливают на потолках офисов. Компактные люминесцентные лампы и внешне практически не отличаются от ламп накаливания. Они только чуть-чуть длиннее, из-за того что между колбой и цоколем находится электроника, управляющая лампочкой.

 

К тому же компактные люминесцентные лампы не требуют специальной проводки и вворачиваются в стандартный патрон. Диаметры их цоколя стандартные: 27 и 14 миллиметров (лампы-миньоны).

 

Так что можно купить такую лампу и запросто ввернуть в квартире. Единственное, чего «не любят» люминесцентные лампы, – частого включения и выключения. Точнее, если интервал между выключением и новым включением – меньше двух минут.

 

Все люминесцентные лампы содержат ртуть (хоть и в очень малых количествах). Как быть с отработанными лампочками? Куда их выбрасывать? Производители, правда, утверждают, что большого вреда от одной разбитой лампочки, содержащей микрограммы ртути, не будет. А если лампочек много?

 

Оказывается, проблема утилизации этой продукции в нашей стране еще не решена. Все крупные потребители люминесцентных ламп, например Мосгорсвет, обязаны заключать договоры с фирмами, занимающимися утилизацией. Контролируют эти процессы специальные экологические предприятия. А рядовой потребитель пока просто выкидывает люминесцентные лампы на помойку.

 

К слову, на Западе любой мусор тщательно сортируется, для каждого вида стоит отдельный бачок. Так что нам есть к чему стремиться.

 

Говорят, что от света люминесцентных ламп устают глаза?

 

Отвечает специалист представительства фирмы «Осрам» Елена Жаданова:

 

– Это утверждение небеспочвенно. Например, в офисе глаза чаще всего устают от резкого контраста между светом монитора и внешним светом (из окна и от лампочки). Офтальмологи говорят, что идеальный вариант для глаз – наличие только одного типа освещения: либо дневного, либо искусственного. А сочетание сразу двух видов освещения дает огромную нагрузку на глаза. Это надо учитывать.

 

Важно также правильно подобрать цветность люминесцентной лампы. Ведь лампа меняет цвет предметов. Например, бывает, что подберешь губную помаду в магазине, а на улице она оказалась совсем другого оттенка. Именно для этих случаев и есть специальные лампы, по цветности максимально приближенные к дневному свету. Кроме того, мы, например, предлагаем лампы различной цветности: дневного, холодного белого, универсального белого, теплого белого цветов.

 

Наша справка
Лампа накаливания – источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно вольфрама), накаливаемой электрическим током.
Люминесцентная лампа – газоразрядный источник света низкого давления. Его световой поток определяется свечением люминофоров под воздействием ультрафиолетового излучения электрического разряда.
Газоразрядный источник света преобразует электрическую энергию в энергию оптического излучения (то есть световую) при прохождении электрического тока через газы или пары веществ, например, ртути.
Компактная люминесцентная лампа – вырабатывает свет по такому же принципу, как и обычная, только на площади во много раз меньшей.
Люминофор – органические и неорганические вещества, способные светиться под действием внешних факторов.
Освещенность – величина светового потока, падающего на единицу поверхности, измеряется в люксах.

 

Расчет эффективности компактной люминесцентной лампы по сравнению с лампой накаливания

 

При одинаковой яркости света компактная люминесцентная лампа потребляет в 5 раз меньше электроэнергии. Другими словами, лампа накаливания в 60 Вт соответствует по яркости компактной люминесцентной лампе в 11 Вт.

 

Приведем наглядный пример. Возьмем две лампы: обычную и люминесцентную. Каждая лампочка, к примеру, будет включена 2 часа утром и 4 часа вечером (всего 6 часов в день). А теперь сравним наши данные в таблице. Наименование Срок службы Затраты на электроэнергию из расчета 1 час – 0,63 копейки (время – 15000 часов) Лампа накаливания (60 Вт), цена 10 рублей 1000 часов 1000 / 6 = 166 дней (то есть около полугода) 60 Вт = 0,06 кВт; 0,06 кВт х 15000 часов х 0,63 копейки = 567 рублей Лампа компактная люминесцентная (11 Вт), цена 350 рублей 15000 часов 15000 / 6 = 2500 дней (то есть 6,8 лет) 11 Вт = 0,011 кВт; 0,011 кВт х 15000 часов х 0,63 копейки =130 рублей
Итак, примерно за семь лет мы используем:
14 ламп накаливания (14 х 10 руб. = 140 руб.) или 1 компактную люминесцентную лампу (350 руб.).
Общий расход:
567 руб. + 140 руб. = 707 руб. (лампа накаливания) и 103 руб. + 350 руб. = 453 руб. (люминесцентная лампа).

 

Таким образом, получается, что компактная люминесцентная лампа, несмотря на высокую стоимость, в целом экономичнее, чем дешевая лампа накаливания. К тому же, если тариф на оплату электроэнергии со временем наверняка увеличится, то выгода от компактной люминесцентной лампы будет еще значительнее.

 

Но если вам все же жалко выложить 350 рублей за одну лампочку, есть лампа эконом-класса, она стоит 160 рублей, срок службы 6000 часов. При использовании она тоже будет экономичнее лампы накаливания.

 

Я, честно говоря, узнала об этих лампах только благодаря редакционному заданию. Но когда я пришла поделиться своими знаниями в редакцию, оказалось, что один наш сотрудник уже четыре года назад оснастил такими лампами всю квартиру (включая туалет и ванну). И до сих пор они служат ему верой и правдой.

 

Да будет тьма!

 

Еще один способ экономии электроэнергии – отключение электрооборудования, когда оно не используется.

 

Например, в подъездах наших домов свет горит всю ночь. Конечно, хорошо вечером войти в ярко освещенное парадное, но в три-пять часов утра народу в подъезде, согласитесь, мягко говоря, немного. А свет все горит! Что же делать? Тут нам поможет выключатель с задержкой времени.

 

Как он действует? Одновременно с включением света включается временное реле, которое гасит свет через заданный промежуток времени (от 10 сек. до 10 мин.). Таким образом, ночью в подъезде свет не горит, но на каждом этаже есть выключатель с подсветкой (красный огонек все время светится). Человек входит в подъезд, видит выключатель, зажигает свет и спокойно поднимается на свой этаж. А через 5–10 минут свет выключится.

 

Представляете, какая экономия! Может, стоит предложить г-ну Чубайсу часть сэкономленных денег пустить на оснащение подъездов такими устройствами? Тем более что в дружественной нам Болгарии (по рассказам очевидцев) эти устройства есть даже в самых обычных типовых многоэтажках.

 

Еще один «экономичный» вариант – инфракрасный детектор (или датчик движения). Он срабатывает непосредственно «на человека». Если кто-то приближается к этому детектору, включается свет. В это устройство тоже встроен выключатель с задержкой времени, который выключит свет через заданное время, после того как человек удалится из «поля зрения» детектора.

 

Чаще всего датчики движения устанавливают в местах общего пользования. Но его вполне можно установить и дома, например, в коридоре.

 

Кроме того, есть датчики движения, совмещенные с датчиком уровня освещенности (он же «сумеречный» выключатель). Его настраивают на определенное значение освещенности, при котором он не позволит включать лампы, если в помещении достаточно света. Или, наоборот, зажжет наружное освещение, когда стемнеет.

 

Как еще сэкономить электроэнергию?

 

Всем известно, что зимой массу энергии «сжирает» электрообогреватель (калорифер). Так вот, чтобы он не работал вхолостую, пригодится термостат.

 

Механический термостат поддерживает заданную температуру в помещении, выключая и включая обогреватель. Но самым экономичным считается программируемый (электронный) термостат: он поддерживает температуру в зависимости от заданной программы – ночью 15 – 18°С, а утром и днем 18 – 24°С. Термостат подключается непосредственно к электрической цепи.

 

Ну и, наконец, светорегуляторы: устройства, регулирующие яркость света ламп. Они ставятся вместо обычного выключателя и выполняют еще и функции включения/выключения света.

 

Например, если вы смотрите телевизор, вам не нужно яркое освещение в комнате. Тогда поверните ручку регулировки светорегулятора и «притушите» свет. В домашних условиях для этого подойдет простейший светорегулятор. А для огромного конференц-зала нужен более мощный светорегулятор, да еще и с дополнительным устройством – электронным балластом.

 

При помощи тех же самых выключателей с таймером можно не только экономить электроэнергию, но и обезопасить свой дом. Например, уезжая на несколько дней, можно создать имитацию вашего присутствия в доме – просто установите на таймере время включения/выключения света.

 

И кое-что еще…

 

Для городской квартиры вполне хватит датчиков движения, светорегуляторов и термостата.

 

Но если нужно обеспечить экономичный и комфортный режим работы всех электроприборов коттеджа, офиса, склада или гостиницы, то потребуются дополнительные устройства – таймеры, контакторы, импульсные реле, устройства защитного отключения (УЗО) и многое другое.

 

Например, управление системами вентиляции, освещения и отопления происходит через контакторы. Вы можете включить обогреватель, а контактор, снабженный модулем задержки, выключит его через какое-то время. Кроме того, контакторы могут давать команду включения и выключения самостоятельно. И тогда обогреватель будет поддерживать комфортную температуру в помещении без участия человека.

 

Традиционно все эти устройства устанавливаются в электрощиток. Там же ставится и панель управления. Нажимаете кнопочку – и включается электрическая цепь, идущая к обогревательному прибору или лампочке, и они начинают работать по заданному режиму.

 

Вот пример использования контакторов. Рассказывает садовод-любитель Геннадий Семионичев:

 

– В нашем товариществе контакторы используются для управления глубинным насосом, который поддерживает необходимый уровень воды в водонапорной башне.

 

На разных уровнях расположены два алюминиевых электрода. Провода от них заведены в схему управления контактора. Как только уровень воды опускается ниже нижнего электрода, контактор срабатывает, и включается насос. Уровень воды в башне повышается. Мотор работает до тех пор, пока вода не достигнет верхнего электрода. Контактор же срабатывает при перегрузке цепи или при обрыве провода и предохраняет мотор.

 

Управление освещением из нескольких мест осуществляется при помощи импульсных реле. Безусловно, очень удобно, войдя в квартиру, включать свет на пути своего следования: в коридоре, кухне, гостиной… А потом, уже добравшись до спальни, не придется обегать все помещения, чтобы выключить свет – достаточно нажать кнопку у изголовья кровати, и свет во всей квартире погаснет. Да что квартира! Представьте себе огромное складское помещение – здесь без импульсных реле просто не обойтись.

 

Включить в определенное время наружное освещение дома помогут таймеры (механические и программируемые). На них можно задавать промежуток времени от 10 секунд до 12 месяцев.

 

С помощью таймеров включается в определенное время и освещение рекламных щитов. Например, если рекламный плакат должен «мигать», то нужно установить в цепь еще и импульсные реле.

 

Кроме того, можно поставить и сумеречный выключатель: он «почувствует» наступление темноты и зажжет свет над рекламным щитом или осветит вывеску магазина, ресторана или офиса...

 

Но чтобы все работало в нужном режиме, чтобы эти «умные» устройства действительно помогали экономить электроэнергию и при этом были безопасными и надежными, покупать их нужно не на рынке, а у дистрибьюторов солидных фирм. Таких, как «AББ» (ABB), «Легран» (Legrand), Франция, «Шнейдер Электрик» (Schneider Electric) – марка «Мерлин Жерен» (Merlin Gerin), Франция, «Копп» (Kopp), Германия, «Элзо» (Elso), Германия, «Юнг» (Jung), Германия, «Элио» (Elio), Швеция, «Дэу» (DAEWOO), Корея. Иначе легко нарваться на дешевую подделку. А это чревато не только выходом из строя сложной и дорогой аппаратуры – под угрозой может оказаться и ваша жизнь. Только в этих фирмах компетентные специалисты выслушают ваши пожелания и предложат разнообразные варианты решений по распределению электроэнергии, подскажут, какие схемы лучше всего подходят для вас. Причем не только сделают необходимый расчет и подберут нужные устройства, но и установят их.

 

Цены на энергосберегающее оборудование:
Компактные люминесцентные лампочки: (3–23 Вт): 160–420 руб.
Светорегуляторы (300 – 1000 Вт): 450 – 10000 руб.
Датчик движения: 4000 – 6000 руб.
Таймер: 2000 руб.
Сумеречный выключатель: 1900 руб.
Программируемый таймер: 4000 – 10000 руб.

 

И не забудьте: экономия электроэнергии выгодна не только каждому из нас. Хотя если подсчитать, то экономия денег – весьма ощутимая. Но если взглянуть на проблему энергосбережения более глобально, то сберегая энергию, мы помогаем нашей с вами планете Земля

 

Вывоз строительного мусора контейнерами и газелями: ознакомиться, быстро и качественно

 

Комитет по энергетике.
Расчет рентабельности когенераци.
Untitled document.
Два взгляда на глобальное потепление.
Водяное предложение.

 

Главная страница ->  Переработка мусора 

Реклама
Hosted by uCoz